Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37979036

RESUMEN

Multivalent binding of CTCF to variable DNA sequences is thought to underlie its ability to mediate diverse cellular functions. CTCF typically binds a 20 base-pair consensus DNA sequence, but the full diversity of CTCF binding sites (CBS) within the genome has not been interrogated. We assessed CTCF occupancy in cultured cortical neurons and observed surprisingly that ~ 22% of CBS lack the consensus CTCF motif. We report here that sequence diversity at most of these atypical CBS involves degeneracy at specific nucleotide positions within the consensus CTCF motif, which likely affect the binding of CTCF zinc fingers 6 and 7. This mode of atypical CTCF binding defines most CBS at gene promoters, as well as CBS that are dynamically altered during neural differentiation and following neuronal stimulation, revealing how atypical CTCF binding could influence gene activity. Dynamic CBS are distributed both within and outside loop anchors and TAD boundaries, suggesting both looping-dependent and independent roles for CTCF. Finally, we describe a second mode of atypical CTCF binding to DNA sequences that are completely unrelated to the consensus CTCF motif, which are enriched within the bodies of tissue-specific genes. These tissue-specific atypical CBS are also enriched in H3K27ac, which marks cis-regulatory elements within chromatin, including enhancers. Overall, these results indicate how atypical CBS could dynamically regulate gene activity patterns during differentiation, development, and in response to environmental cues.

2.
Mol Cell ; 82(20): 3794-3809.e8, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36206766

RESUMEN

Neuronal activity induces topoisomerase IIß (Top2B) to generate DNA double-strand breaks (DSBs) within the promoters of neuronal early response genes (ERGs) and facilitate their transcription, and yet, the mechanisms that control Top2B-mediated DSB formation are unknown. Here, we report that stimulus-dependent calcium influx through NMDA receptors activates the phosphatase calcineurin to dephosphorylate Top2B at residues S1509 and S1511, which stimulates its DNA cleavage activity and induces it to form DSBs. Exposing mice to a fear conditioning paradigm also triggers Top2B dephosphorylation at S1509 and S1511 in the hippocampus, indicating that calcineurin also regulates Top2B-mediated DSB formation following physiological neuronal activity. Furthermore, calcineurin-Top2B interactions following neuronal activity and sites that incur activity-induced DSBs are preferentially localized at the nuclear periphery in neurons. Together, these results reveal how radial gene positioning and the compartmentalization of activity-dependent signaling govern the position and timing of activity-induced DSBs and regulate gene expression patterns in neurons.


Asunto(s)
Calcineurina , Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo II , Neuronas , Animales , Ratones , Calcineurina/genética , Calcineurina/metabolismo , Calcio/metabolismo , ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/genética
3.
Nature ; 562(7725): E1, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30046102

RESUMEN

Change history: In this Article, Extended Data Fig. 8 and Extended Data Table 1 contained errors, which have been corrected online.

4.
Neuron ; 98(6): 1141-1154.e7, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29861287

RESUMEN

The apolipoprotein E4 (APOE4) variant is the single greatest genetic risk factor for sporadic Alzheimer's disease (sAD). However, the cell-type-specific functions of APOE4 in relation to AD pathology remain understudied. Here, we utilize CRISPR/Cas9 and induced pluripotent stem cells (iPSCs) to examine APOE4 effects on human brain cell types. Transcriptional profiling identified hundreds of differentially expressed genes in each cell type, with the most affected involving synaptic function (neurons), lipid metabolism (astrocytes), and immune response (microglia-like cells). APOE4 neurons exhibited increased synapse number and elevated Aß42 secretion relative to isogenic APOE3 cells while APOE4 astrocytes displayed impaired Aß uptake and cholesterol accumulation. Notably, APOE4 microglia-like cells exhibited altered morphologies, which correlated with reduced Aß phagocytosis. Consistently, converting APOE4 to APOE3 in brain cell types from sAD iPSCs was sufficient to attenuate multiple AD-related pathologies. Our study establishes a reference for human cell-type-specific changes associated with the APOE4 variant. VIDEO ABSTRACT.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Células Madre Pluripotentes Inducidas/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Diferenciación Celular , Humanos , Metabolismo de los Lípidos , Microglía/inmunología , Microglía/metabolismo , Organoides/metabolismo , Fosfoproteínas/metabolismo , Transmisión Sináptica , Transcriptoma
6.
Cell Rep ; 20(6): 1319-1334, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28793257

RESUMEN

The histone deacetylase HDAC2, which negatively regulates synaptic gene expression and neuronal plasticity, is upregulated in Alzheimer's disease (AD) patients and mouse models. Therapeutics targeting HDAC2 hold promise for ameliorating AD-related cognitive impairment; however, attempts to generate HDAC2-specific inhibitors have failed. Here, we take an integrative genomics approach to identify proteins that mediate HDAC2 recruitment to synaptic plasticity genes. Functional screening revealed that knockdown of the transcription factor Sp3 phenocopied HDAC2 knockdown and that Sp3 facilitated recruitment of HDAC2 to synaptic genes. Importantly, like HDAC2, Sp3 expression was elevated in AD patients and mouse models, where Sp3 knockdown ameliorated synaptic dysfunction. Furthermore, exogenous expression of an HDAC2 fragment containing the Sp3-binding domain restored synaptic plasticity and memory in a mouse model with severe neurodegeneration. Our findings indicate that targeting the HDAC2-Sp3 complex could enhance cognitive function without affecting HDAC2 function in other processes.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Histona Desacetilasa 2/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Factor de Transcripción Sp3/metabolismo , Animales , Epigénesis Genética , Femenino , Código de Histonas , Histonas/genética , Histonas/metabolismo , Masculino , Memoria , Ratones , Neuronas/fisiología , Factor de Transcripción Sp3/genética
7.
Nature ; 540(7632): 230-235, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27929004

RESUMEN

Changes in gamma oscillations (20-50 Hz) have been observed in several neurological disorders. However, the relationship between gamma oscillations and cellular pathologies is unclear. Here we show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer's disease. Optogenetically driving fast-spiking parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz), but not other frequencies, reduces levels of amyloid-ß (Aß)1-40 and Aß 1-42 isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia, and histological analysis confirmed increased microglia co-localization with Aß. Subsequently, we designed a non-invasive 40 Hz light-flickering regime that reduced Aß1-40 and Aß1-42 levels in the visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate Alzheimer's-disease-associated pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Ritmo Gamma , Microglía/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/prevención & control , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Forma de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Ritmo Gamma/efectos de la radiación , Interneuronas/metabolismo , Interneuronas/efectos de la radiación , Luz , Masculino , Ratones , Microglía/citología , Microglía/efectos de la radiación , Optogenética , Parvalbúminas/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/terapia , Transcriptoma , Corteza Visual/fisiología , Corteza Visual/efectos de la radiación
8.
Nat Neurosci ; 19(11): 1477-1488, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27694995

RESUMEN

De novo mutations in CHD8 are strongly associated with autism spectrum disorder, but the basic biology of CHD8 remains poorly understood. Here we report that Chd8 knockdown during cortical development results in defective neural progenitor proliferation and differentiation that ultimately manifests in abnormal neuronal morphology and behaviors in adult mice. Transcriptome analysis revealed that while Chd8 stimulates the transcription of cell cycle genes, it also precludes the induction of neural-specific genes by regulating the expression of PRC2 complex components. Furthermore, knockdown of Chd8 disrupts the expression of key transducers of Wnt signaling, and enhancing Wnt signaling rescues the transcriptional and behavioral deficits caused by Chd8 knockdown. We propose that these roles of Chd8 and the dynamics of Chd8 expression during development help negotiate the fine balance between neural progenitor proliferation and differentiation. Together, these observations provide new insights into the neurodevelopmental role of Chd8.


Asunto(s)
Trastorno del Espectro Autista/genética , Ciclo Celular/genética , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Neurogénesis , Transcripción Genética , Vía de Señalización Wnt/genética , Animales , División Celular/genética , Femenino , Ratones , Células-Madre Neurales/metabolismo
9.
Cell ; 161(7): 1592-605, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26052046

RESUMEN

Neuronal activity causes the rapid expression of immediate early genes that are crucial for experience-driven changes to synapses, learning, and memory. Here, using both molecular and genome-wide next-generation sequencing methods, we report that neuronal activity stimulation triggers the formation of DNA double strand breaks (DSBs) in the promoters of a subset of early-response genes, including Fos, Npas4, and Egr1. Generation of targeted DNA DSBs within Fos and Npas4 promoters is sufficient to induce their expression even in the absence of an external stimulus. Activity-dependent DSB formation is likely mediated by the type II topoisomerase, Topoisomerase IIß (Topo IIß), and knockdown of Topo IIß attenuates both DSB formation and early-response gene expression following neuronal stimulation. Our results suggest that DSB formation is a physiological event that rapidly resolves topological constraints to early-response gene expression in neurons.


Asunto(s)
Roturas del ADN de Doble Cadena , Neuronas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factor de Unión a CCCTC , ADN-Topoisomerasas de Tipo II/análisis , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Etopósido/farmacología , Regulación de la Expresión Génica , Genes fos , Estudio de Asociación del Genoma Completo , Ratones , Proteínas Represoras/metabolismo , Transcriptoma/efectos de los fármacos
10.
Proc Natl Acad Sci U S A ; 112(23): 7291-6, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-25995364

RESUMEN

Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation.


Asunto(s)
Complejo Nuclear Basolateral/fisiopatología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Hipocampo/fisiopatología , Discapacidades para el Aprendizaje/fisiopatología , Trastornos de la Memoria/fisiopatología , Animales , Complejo Nuclear Basolateral/efectos de la radiación , Hipocampo/efectos de la radiación , Luz , Ratones , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA